Thursday, August 29, 2024

Firewall rules: not as secure as you think

Firewall rules: not as secure as you think

This post introduces some tricks for jailbreaking hosts behind “secure” enterprise firewalls in order to enable arbitrary inbound and outbound requests over any protocol. You’ll probably find the tricks outlined in the post useful if you need to deploy software in a hostile networking environment.

The motivation for these tricks is that you might be a vendor that sells software that runs in a customer’s datacenter (a.k.a. on-premises software), so your software has to run inside of a restricted network environment. You (the vendor) can ask the customer to open their firewall for your software to communicate with the outside world (e.g. your own datacenter or third party services), but customers will usually be reluctant to open their firewall more than necessary.

For example, you might want to ssh into your host so that you can service, maintain, or upgrade the host, but if you ask the customer to open their firewall to let you ssh in they’ll usually push back on or outright reject the request. Moreover, this isn’t one of those situations where you can just ask for forgiveness instead of permission because you can’t begin to do anything without explicitly requesting some sort of firewall change on their part.

So I’m about to teach you a bunch of tricks for efficiently tunneling whatever you want over seemingly innocuous openings in a customer’s firewall. These tricks will culminate with the most cursed trick of all, which is tunneling inbound SSH connections inside of outbound HTTPS requests. This will grant you full command-line access to your on-premises hosts using the most benign firewall permission that a customer can grant. Moreover, this post is accompanied by a repository named holepunch containing NixOS modules automating this ultimate trick which you can either use directly or consult as a working proof-of-concept for how the trick works.

Overview

Most of the tricks outlined in this post assume that you control the hosts on both ends of the network request. In other words, we’re going to assume that there is some external host in your datacenter and some internal host in the customer’s datacenter and you control the software running on both hosts.

There are four tricks in our arsenal that we’re going to use to jailbreak internal hosts behind a restrictive customer firewall:

Once you master these four tools you will typically be able to do basically anything you want using the slimmest of firewall permissions.

You might also want to read another post of mine: Forward and reverse proxies explained. It’s not required reading for this post, but you might find it helpful or interesting if you like this post.

Proxies

We’re going to start with proxies since that’s the easiest thing to explain which requires no other conceptual dependencies.

A proxy is a host that can connect to other hosts on a client’s behalf (instead of the client making a direct connection to those other hosts). We will call these other hosts “upstream hosts”.

One of the most common tricks when jailbreaking an internal host (in the customer’s datacenter) is to create an external host (in your datacenter) that is a proxy. This is really effective because the customer has no control over traffic between the proxy and upstream hosts. The customer’s firewall can only see, manage, and intercept traffic between the internal host and the proxy, but everything else is invisible to them.

There are two types of proxies, though: forward proxies and reverse proxies. Both types of proxies are going to come in handy for jailbreaking our internal host.

Forward proxy

A forward proxy is a proxy that lets the client decide which upstream host to connect to. In our case, the “client” is the internal host that resides in the customer datacenter that is trying to bypass the firewall.

Forward proxies come in handy when the customer restricts which hosts that you’re allowed to connect to. For example, suppose that your external host’s address is external.example.com and your internal hosts’s address is internal.example.com. Your customer might have a firewall rule that prevents internal.example.com from connecting to any host other than external.example.com. The intention here is to prevent your machine from connecting to other (potentially malicious) machines. However, this firewall rule is quite easy for a vendor to subvert.

All you have to do is host a forward proxy at external.example.com and then any time internal.example.com wants to connect to any other domain (e.g. google.com) it can just route the request through the forward proxy hosted at external.example.com. For example, squid is one example of a forward proxy that you can use for this purpose, and you could configure it like this:

acl internal src ${SUBNET OF YOUR INTERNAL SERVER(S)}

http_access allow internal
http_access deny all

… and then squid will let any program on internal.example.com connect to any host reachable from external.example.com so long as the program configured http://external.example.com:3128 as the forward proxy. For example, you’d be able to run this command on internal.example.com:

$ curl --proxy http://external.example.com:3128 https://google.com

… and the request would succeed despite the firewall because from the customer’s point of view they can’t tell that you’re using a forward proxy. Or can they?

Reverse proxy

Well, actually the customer can tell that you’re doing something suspicious. The connection to squid isn’t encrypted (note that the scheme for our forward proxy URI is http and not https), and most modern firewalls will be smart enough to monitor unencrypted traffic and notice that you’re trying to evade the firewall by using a forward proxy (and they will typically block your connection if you try this). Oops!

Fortunately, there’s a very easy way to evade this: encrypt the traffic to the proxy! There are quite a few ways to do this, but the most common approach is to put a “TLS-terminating reverse proxy” in front of any service that needs to be encrypted.

So what’s a “reverse proxy”? A reverse proxy is a proxy where the proxy decides which upstream host to connect to (instead of the client deciding). A TLS-terminating reverse proxy is one whose sole purpose is to provide an encrypted endpoint that clients can connect to and then it forwards unencrypted traffic to some (fixed) upstream endpoint (e.g. squid running on external.example.com:3128 in this example).

There are quite a few services created for doing this sort of thing, but the three I’ve personally used the most throughout my career are:

  • nginx
  • haproxy
  • stunnel

For this particular case, I actually will be using stunnel to keep things as simple as possible (nginx and haproxy require a bit more configuration to get working for this).

You would run stunnel on external.example.com with a configuration that would look something like this:

[default]
accept = 443
connect = localhost:3128
cert = /path/to/your-certificate.pem

… and now connections to https://external.example.com are encrypted and handled by stunnel, which will decrypt the traffic and route those requests to squid running on port 3128 of the same machine.

In order for this to work you’re going to need a valid certificate for external.example.com, which you can obtain for free using Let’s Encrypt. Then you staple the certificate public key and private key to generate the final PEM file that you reference in the above stunnel configuration.

So if you’ve gotten this far your server can now access any publicly reachable address despite the customer’s firewall restriction. Moreover, the customer can no longer detect that anything is amiss because all of your connections to the outside world will appear to the customer’s firewall as encrypted HTTPS connections to external.example.com:443, which is an extremely innocuous type of of connection.

Reverse tunnel

We’re only getting started, though! By this point we can make whatever outbound connections we want, but WHAT ABOUT INBOUND CONNECTIONS?

As it turns out, there is a trick known as a reverse tunnel which lets you tunnel inbound connections over outbound connections. Most reverse tunnels exploit two properties of TCP connections:

  • TCP connections may be long-lived (sometimes very long-lived)
  • TCP connections must necessarily support network traffic in both directions

Now, in the common case a lot of TCP connections are short-lived. For example, when you open https://google.com in your browser that is an HTTPS request which is layered on top of a TCP connection. The HTTP request message is data sent in one direction over the TCP connection and the HTTP response message is data sent in the other direction over the TCP connection and then the TCP connection is closed.

But TCP is much more powerful than that and reverse tunnels exploit that latent protocol power. To illustrate how that works I’ll use the most widely known type of reverse tunnel: the SSH reverse tunnel.

You typically create an SSH reverse tunnel by running a command like this from the internal machine (e.g. internal.example.com):

$ ssh -R "${EXTERNAL_PORT}:localhost:${INTERNAL_PORT}" -N external.example.com

In an SSH reverse tunnel, the internal machine (e.g. internal.example.com) initiates an outbound TCP request to the SSH daemon (sshd) listening on the external machine (e.g. external.example.com). When sshd receives this TCP request it keeps the TCP connection alive and then listens for inbound requests on EXTERNAL_PORT of the external machine. sshd forward all requests received on that port through the still-alive TCP connection back to the INTERNAL_PORT on the internal machine. This works fine because TCP connections permit arbitrary data flow both ways and the protocol does not care if the usual request/response flow is suddenly reversed.

In fact, an SSH reverse tunnel doesn’t just let you make inbound connections to the internal machine; it lets you make inbound connections to any machine reachable from the internal machine (e.g. other machines inside the customer’s datacenter). However, those kinds of connections to other internal hosts can be noticed and blocked by the customer’s firewall.

From the point of view of the customer’s firewall, our internal machine has just made a single long-lived outbound connection to external.example.com and they cannot easily tell that the real requests are coming in the other direction (inbound) because those requests are being tunneled inside of the outbound request.

However, this is not foolproof, for two reasons:

  • A customer’s firewall can notice (and ban) a long-lived connection

    I believe it is possible to disguise a long-lived connection as a series of shorter-lived connections, but I’ve never personally done that before so I’m not equipped to explain how to do that.

  • A customer’s firewall will notice that you’re making an SSH connection of some sort

    Even when the SSH connection is encrypted it is still possible for a firewall to detect that the SSH protocol is being used. A lot of firewalls will be configured to ban SSH traffic by default unless explicitly approved.

However, there is a great solution to that latter problem, which is …

corkscrew

corkscrew is an extremely simple tool that wraps an SSH connection in an HTTP connection. This lets us disguise SSH traffic as HTTP traffic (which we can then further disguise as HTTPS traffic by encrypting the connection using stunnel).

Normally, the only thing we’d need to do is to extend our ssh -R command to add this option:

ssh -R -o 'ProxyCommand /path/to/corkscrew external.example.com 443 %h %p` …

… but this doesn’t work because corkscrew doesn’t support HTTPS connections (it’s an extremely simple program written in just a couple hundred lines of C code). So in order to work around that we’re going to use stunnel again, but this time we’re going to run stunnel in “client mode” on internal.example.com so that it can handle the HTTPS logic on behalf of corkscrew.

[default]
client = yes
accept = 3128
connect = external.example.com:443

… and then the correct ssh command is:

$ ssh -R -o 'ProxyCommand /path/to/corkscrew localhost 3128 %h %p` …

… and now you are able to disguise an outbound SSH request as an outbound HTTPS request.

MOREOVER, you can use that disguised outbound SSH request to create an SSH reverse tunnel which you can use to forward inbound traffic from external.example.com to any INTERNAL_PORT on internal.example.com. Can you guess what INTERNAL_PORT we’re going to pick?

That’s right, we’re going to forward inbound traffic to port 22: sshd. Also, we’re going to arbitrarily set EXTERNAL_PORT to 17705:

$ ssh -R 17705:localhost:22 -N external.example.com

Now, (separately from the above command) we can ssh into our internal server via our external server like this:

$ ssh -p 17705 external.example.com

… and we have complete command-line access to our internal server and the customer is none the wiser.

From the customer’s perspective, we just ask them for an innocent-seeming firewall rule permitting outbound HTTPS traffic from internal.example.com to external.example.com. That is the most innocuous firewall change we can possibly request (short of not opening the firewall at all).

Conclusion

I don’t think all firewall rules are ineffective or bad, but if the same person or organization controls both ends of a connection then typically anything short of completely disabling internet access can be jailbroken in some way with off-the-shelf open source tools. It does require some work, but as you can see with the associated holepunch repository even moderately sophisticated firewall escape hatches can be neatly packaged for others to reuse.